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The Ferrite-Loaded W aveguide Discontinuity Problem

FRANCISCQ J. BERNUES, MEMBER, 1EEE, AND DONALD M. BOLLE, SENIOR MEMBER, IEEE

Abstract—A method is presented to obtain the scattering matrix
of two-port junctions consisting of a waveguide inhomogeneously
loaded with ferrite. Some approximations are discussed and nu-
merical results obtained for the dielectric-loaded twin-slab phase
shifter in rectangular waveguide. .

I. INTRODUCTION

ISCONTINUITY problems in anisotropically loaded
waveguides are important from both the theoretical
and practical point of view (impedance matching, ac-
curate measurement of ferrite parameters, etc.). In this
paper we analyze a two-port junction with the objective
of solving the field discontinuity problem and obtaining
the scattering matrix. Two types of discontinuities are
considered as follows. 1) Single aperture discontinuity:
a waveguide is isotropically loaded for 2z < 0, and totally
or partially loaded with anisotropic media for z > 0. The
plane z = 0 is the aperture plane. 2) Double aperture
discontinuities: a finite length of waveguide is totally or
partially loaded with anisotropic media; the rest of the
waveguide is homogeneously or inhomogeneously loaded
with isotropic media. The two aperture planes coincide
with the ends of the anisotropic section of the waveguide.
The formulation is restricted to the class of problems in
which the ferrite section (the part of the waveguide
loaded with ferrite) satisfies the following requirements.
1) The applied Hyg. field is perpendicular to the direc-
tion of propagation. '

2) The incident mode is a TE,; mode. This is necessary
to ensure that only modes of the TE,, set are excited
in the ferrite section, i.e., modes with only one E com-
ponent (parallel to Hq.) and with no variation along the
direction of the applied H, field.

3) The dielectric—ferrite interfaces in the waveguide
are parallel to the applied H . field. This ensures that only
TEno modes are excited. ‘

Examples of the class of configurations satisfying these
conditions are shown in Fig. 1. In rectangular waveguides
the loading spans the narrow dimension of the guide. For
all these problems, the isotropic sections can be empty
waveguides (of the same cross section) or waveguides

loaded with dielectric lossless slabs. The ferrite loading

the guide is not assumed lossless.
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Examples of configurations that can be analyzed by the
method.

Fig. 1.

The literature dealing with discontinuity problems in
anisotropically loaded waveguides is sparse. Apart from
early work on small discontinuities and general discussions
of the subject, the first attempt at a solution was made by
Suhl and Walker [17]. These authors applied a perturba-
tion method to the problem of circular waveguides filled
with longitudinally magnetized ferrite. An explicit formu-
lation of the mode-matching method was obtained by
Epstein [27], who analyzed an infinite linear system of
equations, the unknowns being the reflection coefficients;
he then pointed out the difficulty of solving the system
in an exact way. Sharpe and Heim [3] dealt with the
same problem by solving an integral equation and ob-
taining a Neumann series expansion for the aperture
electric field (and the equivalent circuit reactance).
Shortly thereafter, Lewin [4] obtained a closed-form
solution of the integral equation and pointed out a para-
doxical result. Lewin’s paradox attracted a number of
researchers; their results are analyzed by Lewin, who has
summarized the remaining problems posed by the para-
dox [5]. Bresler [6] formulated a general approach to
the single-discontinuity problem, leading to an integral

"equation which was solved by variational methods. His

method constitutes the only general systematic approach
published to date. He also considered the double-dis-
continuity problem when the length of the anisotropic
section is large enough to allow neglecting the coupling
between apertures due to the beyond-cutoff modes.
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Numerical and experimental results for the completely
filled rectangular waveguide have been published by
O’Brien [77], [8] and Gagné [9].

II. THE SINGLE-APERTURE DISCONTINUITY
PROBLEM

A. Formulation of the Problem

Assuming an incident TE,;, mode of unit amplitude, the
transverse electric and magnetic fields in the isotropic
section (z < 0) are

electric field: Eq(s) exp (—7B2) + RiE1(s) exp (jB:2)

+ 3 RuBa(s) exp (jBuz) (1a)

n=2

magnetic field: — Y.1E:1(s) exp (—jBw) + R1Y Ei(s)

coxp (j8i2) + 3 Ra¥uBa(s) exp (jBaz) (1b)

=2
where s is the transverse coordinate, the Y, are the mode

admittances, and R, are the unknown reflection coeffi-
cients. The fields in the ferrite section (z > 0) are

electric field: > T.E,*(s) exp (—jB.12)

n=1

(2a)

magnetic field: 3 T,H,*(s) exp (—jB.T2)

n=1

(2b)

where T, are the unknown transmission coefficients.

Assuming that these TE,, sets are complete, the bound-
ary conditions at the aperture plane z = 0 (continuity
of transverse E and H) become

Bu(s) + 3 RuBn(s) = 3 TuEnt(s) = e(s) (38)

n=1 n=l1

“YiEi(s) + X RaYaEa(s) = 3 TuHoiH(s). (3b)

n=1 n=1

Equation (3) is used to define the aperture electric field
e(s), which is the unknown transverse electric field at
z2=0.

Equation (3) is formally the same as the one for iso-
tropic discontinuity problems: in both cases the objective
is to solve for R, T', [or to find e(s) ]. However, we cannot
follow the method used in isotropic problems because: 1)
the E,* set isnot orthogonal, 2) the H,* set isnot orthog-
onal, and 3) H,* is not simply related to E,* by means
of an admittance. Although the E,*(s) set is not orthog-
onal, a wvalid ‘biorthogonality’’ relationship exists,
involving both. B,+(s) and H,*(s) [10]-[12]; this rela-
tionship was used by Bresler [6] to obtain an integral
equation [involving both e(s) and the magnetic aperture
field ] in a properly defined product space, when the ferrite
losses are zero. :

We follow a different approach leading to an integral
equation which involves only e(s). The main obstaclé is
the nonorthogonality of the set E,(s) . This can' be
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circumvented in several ways; for example, since the
E,+(s) setislinearly independent, it can be orthogonalized
by the Gram—Schmidt method.” While this would be a
perfectly valid approach, it has the disadvantage of in-
troducing a new set of orthogonal functions which do not
correspond in general to any identifiable physical mode.
Furthermore, it often happens that the beyond-cutoff
(i-e., higher order) modes of the E,*(s) set are not known
and their determination is, in general, far from trivial
since their propagation factors are generally complex
[107. It was then decided to try first to expand the E,*
fields in terms of an orthogonal set of modes, called the
equivalent dielectric guide (EDG) set which are the
modes supported by a waveguide in which the ferrite has
been replaced by a dielectric of the same permittivity. The
main advantage of this expansion is that it leads naturally
to the ‘‘dielectric approximation” in which the higher
order modes in the ferrite section are replaced by the
higher order modes in the equivalent dielectric waveguide.
Consequently, we set

E; (s) = 2" aim'Eai(s) - (4)

=1

where the subindex ““‘d”’ denotes the modes of the EDG
guide. Since the set F4:(s) is orthogonal, we have

aw' = (Byt\Ea)/(Egs,Eas). (5)

The scalar products appearing in (4) and (5) are given
by the integral

(Fg) = [ J)g*(s) ds (6)
where the integral is a surface integral over the cross
section of the waveguide, and the symbol * indicates the
complex conjugate.

The electric field in the ferrite region can now be writ-
ten in terms of a:,’ by substituting (3a) as follows:

i T.E. (s) = i o Eqi(s)

n=1 7==1

(N
where

Vi=. 1.+,

)
14
o = Z (e 278 Tn;

n=1

(8)

Since the E,*(s) set is linearly independent, the matrix
(') has an inverse. Furthermore, if this matrix is trun-

.cated at an arbitrary value of ¢, the resultant square

matrix will also have an inverse. We can then write

Tn = Z¢nzaz

=1

(9)
where either ¢ = 1..- in the exact case, or 1 1M
in the approximate case where the expansion matrix

(a’) has been truncated. Substituting (7) into (3a),

Fu(s) + 3 RuBa(s) = 3 ciBiails) = e(s).  (10)
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From now on, we can follow the same procedure used for
isotropic problems to obtain the following integral equa~
tion:

Eu(s) = /G(s,s’)e(s’) ds’ (11)
where ‘
@ Y,
G(s,s) = Z_:m)—En(s)En*(s’)
_y M g OB, (12)

nyim1 2Y1(Eai, Eai)
B. Solution of the Integral Eguation

It is evident that an exact closed-form solution of the
integral equation (11) cannot be expected, except perhaps
for simple configurations such as the completely filled
rectangular guide of Fig. 1(a). We are, therefore, led to
consider approximate methods. Of these, the most at-
tractive seems to be a variational solution, although we
only have at our disposal stationary (rather than ex-
tremun) prirciples, due to the non-Hermitian nature of
the kernel (12). A stationary expression for R is given by
the Schwinger—Levine stationary principle [147]:

(G’El) (Elyea)

T B = BB (Geer)

(13)

where the original integral equation (11) is written Fe =

a exp (jo)
S =

—(1 — a) " exp [5(5 + )]

E, and ¢, is the solution of the adjoint equation @*e, =
E\. As is generally the case with variational methods, it
" is difficult to know in advance which trial functions will
give best results, and in this case the problem is com-
pounded by the need for estimating both ¢ and e. To
generate trial functions we have adopted the generalized
Ritz—Rayleigh method, in which both trial functions are
expressed as linear combinations of known arbitrary
functions with unknown coeflicients. In principle, we
could use as arbitrary functions EDG modes, isotropic
modes, ferrite modes, or combination of these. We have
decided to expand e and ¢, in terms of the isotropic set E;:

N
e(s) = L RiEi(s)

i=1

(14a)

N

€(s) = 2 bilii(s)

i=1

(14b)

where the coefficients R;’, b: are unknown. If we sub-
stitute (14) into (13) and then equate to zero the deriva-
tive of the resulting expression with respect to the b;, we
obtain a set of linear equations for the unknown coeffi-
cients R,:
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N
> RN@ELEL) = (f,Es),

=1

h=12,+«-N. (15)

As a consequence of our choice of expansion functions, the
same system is obtained by straight algebraization of the
integral equation, i.e., by substituting . (14a) - directly
into (11), since Ry = 1 4 Ry and R, = R, for n > 2..
The advantage of our choice is that upon solution of the
system (15) we obtain all the R, instead of only R;. We
can rewrite this system as follows:

N
ovalkd = yida

(16)
Pt
where
yi = (Bi,B:) | (17b)
e = (Hot Bn) (17¢)

d:; = Kronecker’s symbol.

The problem is now reduced to a linear system of equa-
tions, and we turn our attention to methods of estimating
the accuracy of the solution.

C. Accuracy of the Solution—the Scattering Matriz of the
Junction

Heller [167] has shown that the scattering matrix of a
lossless two-port junction has the form

(1 — a?) "2 exp [j(a — ¢)] |
(18)
aexp (j5)

‘where a, a, ¢, and § are real numbers.
The scattering matrix for the single aperture problem is

Ry
S =
Ty (Pyy/Py)'2

where Rs, T, are the reflection and transmission coeffi-
cients when a unit amplitude mode is incident from the
ferrite section. These can be obtained in an entirely anal-
ogous manner to Ri, 71 and thus their derivation is not
repeated. P; and Py, are the power carried by the unit
amplitude TE;, mode in the isotropic and ferrite sections,
respectively. Consequéntly, (19) has to be of the form
given by (18); in particular when the junction is lossless
we must have conservation of energy, i.e.,

Ty(Py/ P2 = (1 — RV

T2 (Pr/Prg)'2
’ (19)
R,

(20)

Another check on the solution is to compute the aperture
electric field from both sides of the aperture plane and to
see if the real and imaginary part of e(s) match over the
whole plane. This is the only ready check available when
the junction is lossy.
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Fig. 2. Theoretical model for the remanence twin-slab phase shifter
in rectangular waveguide.

1II. AN EXAMPLE: NUMERICAL RESULTS FOR
TWIN-SLAB PHASE SHIFTER

The method developed in the previous sections has
been applied to the junction bétween a perfectly conduct-
ing empty rectangular waveguide and a rectangular
waveguide of the same dimension loaded from z =0
to 2 = « with two symmetrically placed slabs of lossless
ferrite magnetized a remanence in opposite directions
and with dielectric loading in between (see Fig. 2). This
configuration is the widely used theoretical model of the
dielectric loaded twin-slab remanence latching phase
shifter. The normalized dimensions have been taken from

[17]
21/h = 0.02, 2/Ae = 0.07, z3/A = 0.3805,

eafeo = 13, e7/eq = 12.

The linear system (16) was solved for this configuration
with N = 20. The results appear in Figs. 3 and 4. The
broken lines in both correspond to the dielectric approxi-
mation, in which the ferrite higher order modes are re-
placed by the EDG higher order modes. Fig. 3 shows the
absolute value of the reflection coeflicient as a function
of normalized remanent magnetization; also shown is the
energy residual, expressed as a percentage of the incident
power. As the remanent magnetization is increased, the
reflection coefficient decreases, contrary to what could
be expected intuitively since the fields in the ferrite depart
more from the dielectric limit. In view of the relatively
large error resulting from the dielectric approximation, it
was decided to improve it by retaining the first two modes
of the ferrite section, the rest being replaced by the di-
electric modes as before. The results appear as solid lines
in Figs. 3 and 4. There is a marked reduction in error, but
the results suggest that the validity of the dielectric
approximation is quite limited. The complex propagation
factor for the first higher order mode was obtained by a
method originally used by Gardiol [18] in a similar
problem. Fig. 4(a) shows the incident mode, transmitted
mode, and the aperture field in the dielectric limit. Due
to the symmetry-of the fields, only one-half of the wave-
guide is shown. Fig. 4(b) and (¢) shows the transmitted
mode and the absolute value of the aperture field when
the normalized magnetization equals 0.5, respectively.
The departure from the THyy transmitted fields indicates
the substantial contribution of higher order modes excited
at the junction. These plots were obtained by summing
20 modes on both sides of the junction. Their real and

DIELECTRIC APPROX.
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(a)~(c) Electric field versus distance inside the waveguide.

(a) shows the incident and transmitted TE;s modes and the
aperture field in the dielectric limit; (b)—(c) shows the transmitted
field and the absolute value of the aperture field for clockwise and

anticlockwise magnetization.

Broken lines correspond to the di-

electric approximation. Because of symmetry, only half the wave-

guide is shown.

imaginary parts agree within 1 percent of each other over

the aperture plane.

1IV. THE DOUBLE-APERTURE DISCONTINUITY
‘ PROBLEM

We now assume that the anisotropic section has a

finite length L = 21 (Fig.

5). The mode expansions in

the three regions can be written as follows.
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Fig. 5. Double aperture disconfinuity. Definition of parameters.

z= -l z=0

Region (1): 2 < —I: Same as la—b.
Region (2): —l <z <1

electric: :‘i Anexp (—jB D E*(s) exp (—jBatz)
n=1
+ By exp (j8.71) E.~(s) exp (_]6n—z)
magnetic: i Anexp (—jB. D) H,t(s) exp (—jBatz)

n=1

+ B exp (j8.71) H.=(s) exp (—jB.72). (21)
Region (8):2 > I: '

electric: > T.E.(s) exp (—7Bn2)
n=l1
magnetic: > =T Y, E,.(s) exp (—jB.2). (22)

n=1

The weighting factors multiplying the coefficients A,, B,
in (21) are chosen for reasons which will be apparent
later on. . )

Assuming that the modal expansion (21) is complete,
we can proceed to satisfy the boundary conditions at
both aperture planes (mode matching); with the new
notation

T. = T,exp (—3jB.), all n

R/ = Ruexp (—jBul), n22
Ry = exp (jBud) + Riexp (—jBid) (23)
these are, from the first aperture (z = —1{)

> RJE, = 3 A.E,* + B.E,~exp (2j8,71) (24a)

n=l1 n=1

~2Y1E1 exp (]BIZ) + Z Rn/YnEn

n=1
= > A.H," + B,H, exp (2j8.71) (24b)
n=1
and from the second aperture (z = )

> T/E, = 3 AE.+exp (—2jB,*) + BuE.—  (240)

n==1 n=1

— X T/Y.E, = Y AH,* exp (—2jB,tl) + BuH, .

n=1 n==1
(24d)

From (24) we can obtain a system of coupled integral
equations involving the electric aperture fields at both
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apertures. Their complexity precludes a closed form
solution and it is better to obtain directly a linear system

of equations. The question arises as to what set of ortho-

gonal modes should be used in this process. The main
advantage of the expansion in terms of the EDG fields
is the simplification resulting from the dielectric approxi-
mation; in view of its limited accuracy, we opt for expand-
ing the E,* sets in terms of the isotropic E, set. This
improves the aceuracy of the solution at the expense of
numerical inversion of the expansion matrix.
Define
ani = (B.*E;)

bni = (En—;Ei)
dni = (H,~E). (25)

Taking the scalar product of (24a) and (24c) by E, we
obtain, respectively,
it Qni

R/ = 5 %4, + 2B, exp (2367

n=1 yz

(26a)

To = 5% 4, exp (—2i8,40) + %Bn. (26b)

n=1 Yi

This system can be inverted to yield

An = Z mez’ -+ a/niTi, (273.)

B, = 3 iR + 8T (27b)
Let us remark that in (26) we can neglect those exponen-
tials that are small enough (e.g., less than 10~2). This
amounts of course to neglecting at apertures 1 and 2 those
higher order modes (excited at apertures 2 and 1, respec-
tively) which have negligible amplitude. This is the reason
for the weighting factorsin (21) and for selecting the origin
z = 0 at the middle of the anisotropie section. Substituting
(27) into (24b) and (24d) and taking the scalar product
of both sides of the resulting equations by E.., we get the
following linear system of equations for By, T1':

—2Y 161 exp (jBil)

=3 {[Z PniCam + Tnillum €Xp (258,71) ]

=1 n=1

- mem6m¢]Rz, + Z [Z anicnm

=1 mn=1
+ Snidnm exp (zjﬁn_l) ]T@I (283;)
0 = Z [Z pn'icnm eXp (_2jﬂn+l) + Tnidnm]Ri/
=1 n=1 .
+ Z {[Z QniCum €XP (—2]6n+l) + Snidnm:l
=1 n=1 : .
+ memém,-} Ti,. (28b)

Thus the problem has been reduced to the linear system
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(28). Note that we can again neglect in (28) the exponen-
tial factors corresponding to the higher order modes.

V. NUMERICAL RESULTS FOR TWIN—SLAB
' PHASE SHIFTER

The system (28) was generated and solved for the
geometry previously described. A Fortran-IV program
was written with the number of modes used in the expan-
sion equal to 20, as before. The complex propagation
factors of the modes in the ferrite section were obtained
using the same method mentioned earlier. Typically, the
propagation factors of the higher order modes would take
approximately 15 s of computer time (IBM 360) for
each. Solution of (28) would then take approximately
60 s for each value of L/, Throughout the computations,
wn' was fixed at 0.5. It must be noted that only the com-
plex propagation factors of the forward (“+") modes
are needed because the ones for the reverse (‘““—") modes
are the complex conjugates of the former [117]. In this
particular example the scattering matrix can be obtained
very simply by repeating the calculations with the mag-
netization switched, as this is equivalent to having a
mode incident from the right with the magnetization
unchanged. If Ry, and T, are the reflection and trans-
mission coefficients when the magnetlzatlon is svvltched
the scattering matrix becomes

Rl Tlcc
, (29)
Tl Rlcc

This matrix was computed for several values of L/\y, and
is indeed of the form (18) with « = §. Plots of a, @, and
‘¢ are shown in Fig. 6 as a function of L/\,. The other
scales show the differential phase shift (proportional to
the length) and the magnitudes L/\*, L/\~, L/\,y, where
Nt and A~ are, respectively, 2x/M\t, 27/M~, and A, is
(M 4+ x) /2. Fig. 6 shows that the minima in the absolute
value of the reflection coefficient are very sharp. The

location can be predicted fairly accurately because they:

fall near the values of L/Aay = n/2, with n = 1,2,-:-
Evidently, a given value of the differential phaée shift
might be coupled with a large value of reflection coeﬁiment
in the absence of matching structures.

Fig. 7 shows a plot of the normalized input 1mpedance

Z:/Zi as a function of the normalized length L/\,, where
7 is the actual impedance seen at z = —1./2 lookmg in
‘the 4-z direction, i.e.,

Z: 1+ Riexp (—jBiL)
Z1 1— Rl exp (—][ﬁL)

(30)

and Z; = 1/Y1 (TE; impedance). For L = 0 the graph
starts-at the center (perfect match). As L/\ increases in
intervalsof 0.02 (numbered black dots) the graph describes
a loop and reapproaches the center when L =~ \,,/2. After
three loops, the influence at one aperture of the higher
order modes excited at the other has practically disap-
peared, and the graph repeats itself. The hollow dots in
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Fig. 6. Elements of the scattering matrix as a function of normahzed
length of femte sectlon

Flg 7. Input 1mpeda,nce at ferr1te—d1electnc interface, looking in
the 4z direction, as a function of normalized length of fernte
section. Numbered black dots correspond to those of Fig. 6
Circles correspond to dielectric limit.

Fig. 7 correspond to the dielectric limit, when w,’ = 0.
Note that they fall near the corresponding black dots,
because with | wn’ | = 0.5 the ferrite fields do not depart
drastically from the ﬁelds that obtain in the dielectric
limit. Fig. 7, therefore, furmshes the design parameter
needed for an impedance matchlng network. Fig. 8(a)—(d)
shows plots of the absolute value of the aperture fields;
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Tig. 8(a) and (b) corresponds to a value of L such that
the absolute value of the reflection coefficient is small;
note that the fields at the first aperture resemble the
transmitted TEy, mode. Fig. 8(c)—(d) corresponds to a
large value of the reflection coefficient; the field at the
first aperture is closer to zero. It should not be inferred
from these plots that the actual aperture fields are nearly
equal for the two magnetization states, because their real
and imaginary parts differ markedly. The fields in these
plots were obtained by adding up modes on both sides
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L/Xp=0.38
DPS 294,72
|wmi=0.5

COUNTERCLOCKWISE
\ ZERO MAGNETIZATION
CLOCKWISE

0.5

L
o.1 02 4,303 a/2
(a)
el N SECOND APERTURE
A L/XAg=0.38
DPS=94.72
1LoHl . |w'ml=0.5

COUNTERCLOCKWISE
ZERO ’

MAGNETIZATION
CLOCKWISE

0.5
1 - !
0. 0.2 x/>\,,°3 a/2
(b)
13 FIRST APERTURE
- L/Xo=0.28
PS5 =69.82
1.0 - i why]= 0.5
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}_ ZERO. MAGNETIZATION
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1€l SECOND APERTURE
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lwhpl=0.5
COUNTERCLOCKWISE
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L —1 __—7ERO
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0.5

CE
(d)

Fig. 8. (a) and (b) Absolute value of the aperture electric field as
a function of normalized distance inside the waveguide. (¢) and
(d) Absolute value of aperture electric field for a different value
of normalized remanent magnetization.
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of the apertures, and the values coincide within 1 percent.

The energy residual is also less than 0.1 percent {for any
L), a result of the fact that no approximations were made
to obtain the propagation factors of the higher order
modes in the anisotropic section.

VI. CONCLUSIONS

Waveguide discontinuity problems involving finite or
infinite sections of transversely magnetized ferrites are
solved by a mode-matching procedure which leads to a
linear system of equations. This system ean be solved

‘with good accuracy by truncation, at a reasonable matrix

size. The method can be used to obtain- the scattering
matrix of the junction, and to obtain the design parameters
for an impedance matching network. The dielectric ap-
proximation, in conjunction with expansion of the ferrite
fields in terms of the EDG fields, can be used, whereupon
computing time is minimized, at the expense of accuracy.
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