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The Ferrite-Loaded Waveguide Discontinuity Problem

FRANCISCO J. BERNUES, MEMBER, IEEE, AND DONALD M. BOLLE, SENIOR MEMBER, IEEE

Absfract—A method is presented to obtain the scattering matrix
of two-port junctions consisting of a waveguide inhomogeneously
loaded with ferrite. Some approximations are discussed and nu-
merical results obtained for the dielectric-loaded twin-slab phase
shifter in rectangular waveguide.

I. INTRODUCTION

D ISCONTINUITY problems in anisotropically loaded

waveguides are important from both the theoretical

and practical point of view (impedance matching, ac-

curate measurement of ferrite parameters, etc.). In this

paper we analyze a two-port junction with the objective

of solving the field discontinuity problem and obtaining

the scattering matrix. Two types of discontinuities are

considered as follows. 1) Single aperture discontinuity y:

a waveguide is isotropically loaded for z <0, and totally

or partially loaded with anisotropic media for z >0, The

plane, z = O is the aperture plane. 2) Double aperture

d’iscontinuities: a finite length of waveguide is totally or

partially loaded with anisotropic media; the rest of the

waveguide is homogeneously or inhomogeneously loaded

with isotropic media. The two aperture planes coincide

with the ends of the anisotropic section of the waveguide.

The formulation is restricted to the class of problems in

which the ferrite section (the part of the waveguide

loaded with, ferrite) satisfies the following requirements.

1) The applied Hde field is perpendicular to the direc-

tion of propagation.

2) The incident mode is a TEnO mode. Thk is necessary

to ensure that only modes of the TE~o set are excited

in the ferrite section, i.e., modes with only one E com-

ponent (parallel to ~d.) and with no variation along the

direction of the applied H~~ field.

3) The dielectric–ferrite interfaces in the waveguide

are parallel to the applied Hd~ field. This ensures that only

TEnO modes are excited.

Examples of the class of configurations satisfying these

conditions are shown in Fig. 1. In rectangular waveguides

the loading spans the narrow dimension of the guide. For

all these problems, the isotropic sections can be empty

waveguides (of the same cross section) or waveguides

loaded with dielectric lossless slabs. The ferrite loading

the guide is not assumed lossless.
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Fig. 1, Examples of configu~rahusd~hat com be analyzed by the

The literature dealing with discontinuity problems in

anisotropically loaded waveguides is sparse. Apart from

early work on small discontinuities and general discussions

of the subject, the first attempt at a solution was made by

Suhl and Walker [1]. These authors applied a perturba-

tion method to the problem of circular waveguides filled

with longitudinally magnetized ferrite. An explicit formu-

lation of the mode-matching method was obtained by

Epstein [2], who analyzed an infinite linear system of

equations, the unknowns being the reflection coefficients;

he then pointed out the difficulty of solving the system

in an exact way. Sharpe and IIeim [3] dealt with the

same problem by solving an integral equation and ob-

taining a Neumann series expansion for the aperture

electric field (and the equivalent circuit reactance).

Shortly thereafter, Lewin [4] obtained a closed-form

solution of the integral equation and pointed out a para-

doxical result. Lewin’s paradox attracted a number of

researchers; their results are analyzed by Lewin, who has

summarized the remaining problems posed by the para-

dox [5]. Bresler [6] formulated a general approach to

the single-discontinuity problem, leading to an integral

equation which was solved by variational methods. His

methc~d constitutes the only general systematic approach

published to date. He also considered the double-dis-

continuity problem when the length of the anisotropic

section is large enough to allow neglecting the coupling

between apertures due to the beyond-cutoff modes.
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Numerical and experimental results for the completely

filled rectangular waveguide have ,been published by

O’Brien [7], [8] and Gagn6 [9].

II. THE SINGLE-APERTURE DISCONTINUITY

PROBLEM

A. Formulation of the Problem

Assuming an incident TEI, mode of unit amplitude, the

transverse electric and magnetic fields in the isotropic

section (z < O) are

electric field: El(s) exp ( —j&) + liJ31 (s) exp (jl%z)

,,

+ S l?~E~(s) exp (J%.z) (la)
~=t

magnetic field: – Y,E,(s) exp ( –~g?,z) + R, Y,E,(s)

“exp (J31z) + s R. Y.-E. (s) exp (JLz) (lb)
~=t

where s is the transverse coordinate, the Y. are the mode

admittances, and R. are the unknown reflection coeffi-

cients. The fields in the ferrite section (z ~ O) are

electric field: j !i’’.En+s)s) exp ( –~f?n+z) (2a)
%=1

magnetic field: ~ Tfin+ (s) exp ( —~~fi+z) (2b)
n=l

where T. are the unknown transmission coefficients.

Assuming that these TE.O sets are complete, the bound-

ary conditions at the aperture plane z = O (continuity

of transverse E and H) become

E,(s) + ~ RnEn(.s) = ~ TnEn+(.s) = c(s) (3a)
~=1 ~=1

– Y,E,(s) + : RnYnEn (S) = ~. ~n~n+(S) . (3b)
~=1 ~=1

Equation (3) is used to define the aperture electric field

e(s), which is the unknown transverse electric field at

2=0.

Equation (3) js formally the same as the one for iso-

tropic discontinuity problems: in both cases the objective

is to solve for R%, T. [or to find e(s)]. However, we cannot

follow the method used in isotropic problems because: 1)

the E.+ set is not orthogonal, 2) the H.+ set is not orthog-

onal, and 3) R*+ is not simply related to 17n+ by means

of an admittance. Although the E.+(s) set is not orthog-

onal, a valid ‘ ‘biorthogonality” relationship exists,
involving both. E.+ (s) and H.+ (s) [10]–[12]; this rela-

tionship was used by Bresler [6] to obtain an integral

equation [involving both e(s) and the magnetic aperture

field] in a properly defined product space, when the ferrite

losses are zero.

We follow a different approach leading to an integral

equation which involves only c(s). The main obstacle is

the nonorthogonality of the set E.+(s). This can be

circumvented in several ways; for example, since the

E%+ (s) set is linearly independent, it can be orthogonalized

by the Gram-Schmidt method. While this would be a

perfectly valid approach, it has the disadvantage of in-

troducing a new set of orthogonal functions which do not

correspond in general to any identifiable physical mode.

Furthermore, it often happens that the beyond-cutoff

(i.e., higher order) modes of the E.+(s) set are not known

and their determination is, in general, far from trivial

since their propagation factors are generally complex

[10]. It was then decided to try first to expand the E.+

fields in terms of an orthogonal set of modes, called the

equivalent dielectric guide (EDG) set which are the

modes supported by a waveguide in which the ferrite has

been replaced by a dielectric of the same permittivity. The

main advantage of this expansion is that it leads naturally

to the “dielectric approximation” in which the higher

order modes in the ferrite section are replaced by the

higher order modes in the equivalent dielectric waveguide.

Consequently, we set

where the subindex “d” denotes the modes of the EDG

guide. since the set Edi (s) is orthogonal, we have

Q’ = (En+,Edi) / (&,-%i) . (5)

The scalar products appearing in (4) and (5) are given

by the integral

(f,g) = ~f(s)g*(s) ds (6)
8

where the integral is a surface integral over the cross

section of the waveguide, and the symbol * indicates the

complex conjugate.

The electric field in the ferrite region can now be writ-

ten in terms of OX.’ by substituting (3a) as follows:

(7)

where

Since the En+(s) set is linearly independent, the matrix

(a’) has an inverse. Furthermore, if this matrix is trun-

cated at an arbitrary value of i, the resultant square

matrix will also have an inverse. We can then write

where either i = 1.. . in the exact case, or i = 1.. . M

in the approximate case where the expansion matrix

(a’) has been truncated. Substituting (7) into (3a),

J!?,(s) + ~ R. E.(s) = ~ @,Ed,(s) = 6(S). (10)
1 1
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From now on, we can follow the same procedure used for

isotropic problems to obtain the following integral equa-

tion:

E,(s) = / G(s,s’),(s’) ds’ (11)
8

where

G(s,.s’) = ~
Y.

~=~2 Yl(En,En)
Eden*

-5’, 2Y,(;:,E,,)~n+(s)-Edi*(s’)~ (12)

B. Solution of the Integral Equation

It is evident that an exact closed-form solution of the

integral equation (11) cannot be expected, except perhaps

for simple configurations such as the completely filled

rectangular guide of Fig. 1(a). We are, therefore, led to

consider approximate methods. Of these, the most at-

tractive seems to be a variational solution, although we

only have at our disposal stationary (rather than ex-

tremun) principles, due to the non-Hermitian nature of

the kernel (12). A stationary expression for R is given by

the Schwinger–Levine stationary principle [14]:

1 +-R,=
(e,E,) (E,,c.)

(EI,E,) (Ge,ea)
(13)

where the original integral equation (11 ) is written @ =

1189

~ R,’(@E,,EJ = (j,Eh) , h = l,2,0so~. (15)
{cl

As a consequence of our choice of expansion functions, the

same system is obtained by straight algebraization of the

integral equation, i.e., by substituting (14a) directly
into (11), since RI’ = 1 + RI and R.’ = R. for n ~ 2.

The advantage of our choice is that upon solution of the

system (15) we obtain all the R. instead of only RI. We

can rewrite this system as follows:

~ YihRi’ = ~ldik ~ (16)
isl

where

Yi s (Ei,Ei) (17b)

Cn~= (H.+,Eh) (17C)

&i = Kronecker’s symbol.

The problem is now reduced to a linear system of equa-

tions, and we turn our attention to methods of estimating

the accuracy of the solution.

C. Accuracy of the Solution—the Scattering Matrix of the

Junction

Heller [16] has shown that the scattering matrix of a

lossless two-port junction has the form

( a exp (ja)

s=

(1 -- a’)’l’ exp [j(c2 – ~)]

\ (18)

El, and e. is the solution of the adjoint equation @f*cm+

El. As is generally the case with variational methods, it

is difficult to know in advance which trial functions will

give best results, and in this case the problem is com-

pounded by the need for estimating both e and e.. TO

generate trial functions we have adopted the generalized

Ritz–Rayleigh method, in which both trial functions are

expressed as linear combinations of known arbitrary

functions with unknown coefficients. In principle, we

could use as arbitrary functions ED G modes, isotropic

modes, ferrite modes, or combination of these. We have

decided to expand c and e. in terms of the isotropic set Ei:

e(s) = ~ R;’Ei(s) ( 14a)
i=l

t.(~) = ~ biEi(s) (14b)
i=l

where the coefficients Ritl bi are unknown. If we sub-

stitute (14) into (13) and then equate to zero the deriva-

tive of the resulting expression with respect to the bi, we

obtain a set of linear equations for the unknown coefi-

cients Ri’:

where a, a, ~, and 8 are real numbers.

The scattering matrix for the single aperture problem is

(

R,

“)

T’ (P1/Plf ) 112

s= (19)

TI (Pl~/Pl) 112 R,

where R2, T2 are the reflection and transmission coefli

cients when a unit amplitude mode is incident from the

ferrite section. These can be obtained in an entirely anal-

ogous manner to Rl, T1 and thus their derivation is not

repeated. PI and Plf are the power carried by the unit

amplitude TEIO mode in the isotropic and ferrite sections,

respectively. Consequently, (19) has to be of the form

given by (18) ; in particular when the junction is lossless

we must have conservation of energy, i.e.,

T1(Pu/PJ 112= (1 – &2) 1f2. (20)

Another check on the solution is to compute the aperture

electric field from both sides of the aperture plane and to

see if the real and imaginary part of e(.s) match over the

whole plane. This is the only ready check available when

the junction is lossy.



1190 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1974

“’’’” ‘L”fi , 131ELECTRIC

FIg.2. Theoretical model fortheremanence twin-slab phsse shifter
in rectangular waveguide.

III. AN EXAMPLE: NUMERICAL RESULTS FOR

TWIN-SLAB PHASE SHIFTER

The method developed in the previous sections has

been applied to the junction between a perfectly conduct-

ing empty rectangular waveguide and a rectangular

waveguide of the same dimension loaded from z = O

to z = co with two symmetrically placed slabs of Iossless

ferrite magnetized a remanence in opposite directions

and with dielectric loading in “between (see Fig. 2). This

configuration is the widely used theoretical model of the

dielectric loaded twin-slab remanence latching phase

shifter. The normalized dimensions have been taken from

[17]

x@O = 0.02, X2/kO = 0.07, x8/~11 = 0.3805,

Q/co = 13, ef/@= 12.

The linear system (16) was solved for this configuration

with N = 20. The results appear in Figs. 3 and 4. The

broken lines in both correspond to the dielectric approxi-

mation, in which the ferrite higher order modes are re-

placed by the EDG higher order modes. Fig. 3 shows the

absolute value of the reflection coefficient as a function

of normalized remanent magnetization; also shown is the

energy residual, expressed as a percentage of the incident

power. As the remanent magnetization is increased, the

reflection co@icient decreases, contrary to what could

be expected intuitively since the fields in the ferrite depart

more from the dielectric limit. In view of the relatively

large error resulting from the dielectric approximation, it

was decided to improve it by retaining the first two modes

of the ferrite section, the rest being replaced by the di-

electric modes as before. The results appear as solid lines

in Figs. 3 and 4. There is a marked reduction in error, but

the results suggest that the validity of the dielectric

approximation is quite limited. The complex propagation

factor for the first higher order mode was obtained by a

method originally used by Gardiol [18] in a sirrilar

problem. Fig. 4(a) shows the incident mode, transmitted

mode, and the aperture field in the dielectric limit. Due

to the symmetry-of the fields, only one-half of the wave-
guide is shown. Fig. 4(b) and (c) shows the transmitted

mode and the absolute value of the aperture field when

the normalized magnetization equals aO.5, respectively.

The departure from the TEIO transmitted fields indicates

the substantial contribution of higher order modes excited

at the junction. These plots were obtained by summing

20 modes on both sides of the junction. Their real and
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Fig. 4. (a)-(c) Electric field versus d~tance inside the waveguide.
(a) shows the incident and transmitted TEIO modes and the
aperture field in the dielectric limit; (b) –(c) shows the transmitted
field and the absolute value of the aperture field for clockwise and
anticlockwise magnetization. Broken lines correspond to the di-
electric approximation. Because of symmetry, only half the wave-
guide is shown.

imaginary parts agree within 1 percent of each other over

the aperture plane.

IV. THE DOUBLE-APERTURE DISCONTINUITY

PROBLEM

We now assume that the anisotropic section has a

finite length L = 21 (Fig. 5). The mode expansions in

the three regions can be written as follows.
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Fig. 5. Double aperture dkcontinuity. Definition of parameters.

Region (l):z< –l:Sameas la-b.

Region (2): –1 < z <1:

electric: ~ A. exp ( –j@.+l)ll.+(s) exp ( –jb.+z)
n=l

+ B. exp (j@n-l)E.-(s) exp ( –j&-z)

magnetic: fi Afi exp ( –j&+l)Hfi+(s) exp ( –j@.+z)
a=l

+ B. exp (JL-l)H.-(S) exp ( –JL-z). (21)

Region (3): z >1:

electric: ~ T.E. (.s) exp ( –j&z)
??=1

magnetic: ~ – TnY.Em(.s) exp ( –j/3.z). (22)
n=l

The weighting factors multiplying the coqflicients A., B.

in (21) are chosen for reasons which will be apparent

later on.

Assuming that the modal expansion (21) is complete,

we can proceed to satisfy the boundary conditions at

both aperture planes (mode matching); with the new

notation

T.’ = T. exp ( –j&J), all n

R.’ = R. exp ( –j&J), nz2

R; = exp (j@) + R, exp ( –j@J) (23)

these are, from the first aperture (z = – 1)

and from the second aperture (z = 1)

~ Tm’Em = ~ A%En+ exp ( –2jf?.+1) + BnE.- (24c)
%=1 n=l

(24d)

From (24) we can obtain a system of coupled integral

equations involving the electric aperture fields at both

apertures. Their complexity precludes a closed form

solution and it is better to obtain directly a linear system

,of equations. The question arises as to what set of ortho-

gcmall modes should’ be used in this process. The main

advantage of the expansion in terms of the EDG fields

is the simplification resulting from the dielectric approxi-

mation; in view of its limited accuracy, we opt for expand-

ing the Em+ sets in terms of the isotropic En set. This

improves the accuracy of the solution at the expense of

numerical inversion of the expansion matrix.

Define

a.{ = (E.+,Ei)

bfii ~ (Em-,Ei)

dni - (H.–jEi) .

Taking the scalar product of (24a) and (24c)

obtain, respectively,

(25)

by Em we

(26a)

bn,
T,’ = ~~1~ An exp ( –2j~n+l) + — B.. (26b)

yi

Thk system can be inverted to yield

An = ~ PmiRi’ + aniTi’ (27a)
%

B. = ~ rniRi’ + sniTi’. (27b)
a

Let us remark that in (26) we can neglect those exponen-

tial that are small enough (e.g., less than 10-20). Thk

amounts of course to neglecting at apertures 1 and 2 those

higher order modes (excited at apertures 2 and 1, respec-

tively) which have negligible amplitude. This is the reason

for the weighting factors in (21) and for selecting the origin

z = O at the middle of the anisotropic section. Substituting

(27) into (24b) and (24d) and taking the scalar product

of bckh sides of the resulting equations by Em, we get the

following linear system of equations for RI’, TI’:

– 2 Ylydh exp (ji%l)

= ; {[~ P.ic.~ + rnidmnexp (2j@.-0 I
;=l ~=1

— Ym~m&i]Ri’ + ~ [ 5 afiifi~
kl ~sl

+ s.id%~ exp (2j@fi-1) ]Ti’ (28a)

O = ~ [C p~ic,,~ exp ( –2jP~+l) + r.id.~]R;
i=l n=l

+ s {[s a.ic.~ exp ( – 2j/?.+1) + snid.mJ
&1 n=1

+ Ymg/m8mi} Ti’. (28b)

Thus the problem has been reduced to the linear system
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(28). Note that we can again neglect in (28) the exponen-

tial factors corresponding to the higher order modes.

V. NUMERICAL RESULTS FOR TWIN-SLAB

PHASE SHIFTER

The system (28) was generated and solved for the

geometry previously described. A Fortran-IV program

was written with the number of modes used in the expan-

sion equal to 20, as before. The complex “propagation

factors of the modes in the ferrite section were obtained

using the same method mentioned earlier. Typically, the

propagation factors of the higher order modes would take

approximately 15 s of computer time (IBM 360) for

each. Solution of (28) would then take approximately

60s for each value of L/k Throughout the computations,

u~’ was fixed at 0.5. It must be noted that only the corn;

plex propagation factors of the forward (”+”) modes

are needed because the ones for the reverse (‘’ —”) modes

are the complex conjugates of the former [11]. In this

particular example the scattering matrix can be obtained

very simply by repeating the calculations with the magn-
etization switched, as this is equivalent to having a

mode incident from the right with the magnetization

unchanged. If RI., and TIC. are the reflection and trans-

mission coefficients when the magnetization is switched,

the scattering matrix becomes

( )

RI Tic,

(29)

TI Rlc.

This matrix was computed for several values of L/ho, and

is indeed of the form (18) with a = 8. Plots of a, a, and

@ are shown in Fig. 6 as a function of L/k The other

scales show the differential phase shift (proportional to

the length) and the magnitudes L/i+, L/i–, L/k*v, where

k+ and k- are, respectively, 27r/kl+, 2T/kl–, and ~av is

(A+ + k-) /2. Fig. 6 shows that the minima in the absolute

value of the reflection coefficient are very sharp. The

location can be predicted fairly accurately because they

fall near the values of L/~a. = n/2, with n = 1,2,.:.’.

Evidently, a given value of the differential phase shift

might be coupled with a large value of reflection’coefficient

in the absence of matching structures.

Fig. 7 shows a plot of the normalized input impedance

Zi/Z1 as a function of the normalized length L/AO, where

Zi is the actual impedance seen at z = – L/2 looking in

the +Z direction, i.e.,

z, 1 + RI exp ( –jplL)

5“ 1 – RI exp (–j@lL)
(30)

and Z1 = 1/ YI (TE1O impedance). For L = O the graph

starts at the center (perfect match). As L/kO increases in

intervals of 0.02 (numbered black dots) the graph describes

a loop and ~eapproaches the center when L ~ Aav/2. After

three loops, the influence at one aperture of the higher

order modes excited at the other has practically disap-

peared, and the graph repeats itself. The hollow dots in
,-

0
L/Aav,

.5 I.0 1.5
I 1 i

.5 I.0 L/k- 1,5 2.0
1 I I

< .5 1,0 L/?.+ I .5
360°

(+) 270°
~ r I

180”
1

—

90”

0 J’
360” -

(a=~) ?.70”

Iso”
w

90” 1-

0

1.0 L I

Fig. 6.

(0)
.s

:6

.4

.2

.1 .2 .3 .4 .5 .6
L/i O

I 1

0 45” 90” 135” 160”

DIFFERENTIAL PHASE SHIFT

Elements of the scattering matrix w a function of normalized

length of ferrite section.

Fig. 7. Inp,ut impedance at ferrittilelectrnc interface, looking in
the +Z dmection, as a function of normalized length of ferrite
section. Numbered black dots correspond to those of Fig. 6.
Ckcles correspond to dlelectfic liiit.

Fig. 7 correspond to the dielectric limit, when Wp’ = O.

Note that they fall near the corresponding black dots,

because with I w~’ I = 0.5 ,the ferrite fields do not depart

drastically from the fields that obtain in the dielectric

limit. Fig. 7, therefore, furnishes the design parameter

needed for an impedance matching network. Fig. 8 (a)–(d)

shows plots of the absolute value of the aperture fields;
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Fig. 8(a) and (b) corresponds to a value of L such that

the absolute value of the reflection coefficient is small;

note that the fields at the first aperture resemble the

transmitted TEIO mode. Fig. 8(c) –(d) corresponds to a

large value of the reflection coefficient; the field at the

first aperture is closer to zero. It should not be inferred

from these plots that the actual aperture fields are nearly

equal for the two magnetization states, because their real

and imaginary parts differ markedly. The fields in these

plots -were obtained by adding up modes on both sides

jE[ ~ FIRST APERTuRE

L/ AO=0.38
rJPs .94.72

I.0 –
COUNTERCLOCKWISE

hA6NETIzAT10N

0.5 -

0.1 0.2
XIAO 03 0/2

(a)

IEl - SECOND APERTuRE

L/ AO=0.38
DPs =94.72

1.0 - ]kI’ml=0.5
COUNTERCLOCKWISE

MAGNETIZATION

0.5 –

1 I
0.[ 0.2

x/x.
0.3 0/2

(b)

IEI FIRST APERTURE

L/AO=0.28
EIPS=69.8Q

1.0 - IW’m[= 0.5
COUNTtRCLOCKWISE

MAGNETIZATION

0.5 -

I 1
0. I 0.2

x/i.
0.3 a/z

(c)

I E] SECONO APERTURE

L/~O=O. Z8
0PS=69,8Q

I ,0 – IW+]=O.5
COUNTERCLOCKWISE

MAGNETIZATION

0.5 –

I
0.1 0.2

x/.ko
0.3 0/2

(d)

Fig. 8. (a) and (b) Absolute value of the aperture electric field as
a funotion of normalized distance inside the waveguide. (o) and
(d) Absolute value of aperture electrio field for a different value
of normalized remanent magnetization.
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of the apertures, and the values coincide within 1 percent.

The energy residual is also less than 0.1 percent (for any

L), a result of the fact that no approximations were made

to obtain the propagation factors of the higher order

modes in the anisotropic section.

VI. CONCLUSIONS

Wa,veguide discontinuity problems involving finite or

infinite sections of transversely magnetized ferrites are

solved by a mode-matching procedure which leads to a

linear system of equations. This system can be solved

with good accuracy by truncation, at a reasonable matrix

size. The method can be used to obtain the scattering

matrix of the junction, and to obtain the design parameters

for an impedance matching network. The dielectric ap-

proximation, in conjunction with expansion of the ferrite

fields in terms of the EDG fields, can be used, whereupon

computing time is minimized, at the expense of accuracy.
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